How do you simplify the expression Sin(arctan(x)+arccos(x))?

2 Answers
Jul 26, 2016

sin 2x

Explanation:

arctan x --> x
arccos x --> x
sin (arctan x + arccos x) = sin (x + x) = sin 2x

Jul 26, 2016

.=(1/sqrt(1+x^2))(sqrt(1-x^2)+-x^2), x in [-1, 1]#.

The negative sign is used, when x in [-1, 0].

Explanation:

Let a = arc tan (x). The principal value of a in [-pi/2, pi/2]

Then x = tan a. sin a = +-x/sqrt(1+x^2) and cos a = 1/sqrt(1+x^2).

Let b = arc cos x. The principal value of b in [0, pi]

Then, x = cos b and sin b = sqrt(1-x^2). Also, x in [-1, 1].

The given expression =

sin ( a + b )

= sin a cos b + cos a sin b

= (+-x/sqrt(1+x^2))(x)+(1/sqrt(1+x^2))sqrt(1-x^2)

=(1/sqrt(1+x^2))(sqrt(1-x^2)+-x^2), x in [-1, 1]#.

The negative sign is used when x in [-1, 0].