How do you simplify the expression (sintheta+tantheta)/(1+sectheta)?

1 Answer
Sep 9, 2016

sin(theta)

Explanation:

We have: (sin(theta) + tan(theta)) / (1 + sec(theta))

Let's apply two standard trigonometric identities; tan(theta) = (sin(theta)) / (cos(theta)) and sec(theta) = (1) / (cos(theta)):

= (sin(theta) + (sin(theta)) / (cos(theta))) / (1 + (1) / (cos(theta)))

= ((sin(theta)cos(theta) + sin(theta)) / (cos(theta))) / ((cos(theta) + 1) / (cos(theta)))

= (sin(theta)cos(theta) + sin(theta)) / (cos(theta) + 1)

Let's apply the Pythagorean identity cos^(2)(theta) + sin^(2)(theta) = 1:

= (sin(theta) (cos(theta) + 1)) / (cos(theta) + cos^(2)(theta) + sin^(2)(theta))

We can rearrange the Pythagorean identity to get:

=> sin^(2)(theta) = 1 - cos^(2)(theta)

Let's apply this to get:

= (sin(theta) (cos(theta) + 1)) / (cos(theta) + cos^(2)(theta) + 1 - cos^(2)(theta))

= (sin(theta) (cos(theta) + 1)) / (cos(theta) + 1)

= sin(theta)