How do you simplify the expression (sinx+cosx)/(sinxcosx)?

2 Answers
Apr 3, 2018

(sinx+cosx)/(sinxcosx)=color(red)(secx+cscx)

(see simplification process below)

Explanation:

(sinx+cosx)/(sinxcosx)

rArrsinx/(sinxcosx)+cosx/(sinxcosx)

rArrcancelsinx/(cancelsinxcosx)+cancelcosx/(sinxcancelcosx)

rArr1/cosx+1/sinx

rArrcolor(red)(secx+cscx)

Apr 3, 2018

sec x + csc x

Explanation:

(sin x + cos x)/(sin x.cos x) =
= (sin x)/(sin x.cos x) + (cos x)/(sin x.cos x)= = sec x + csc x