How do you simplify the expression (tan^2t+1)/(1+cot^2t)tan2t+11+cot2t?

1 Answer
Aug 29, 2016

tan^2 ttan2t.

Explanation:

The Exp.=(tan^2 t+1)/(1+cot^2 t)=tan2t+11+cot2t

=(sin^2 t/cos^2 t+1)/(1+cos^2 t/sin^2 t)=sin2tcos2t+11+cos2tsin2t

={(cancel(sin^2 t+cos^2 t))/cos^2 t}/{cancel(cos^2 t+sin^2 t)/sin^2 t}

=sin^2 t/cos^2 t

=tan^2 t.

Alternatively, to shorten the procedure of simplification, we can, use

the Identities : tan^2 t+1=sec^2 t, and, 1+cot^2 t=csc^2 t.