How do you simplify (x^3)^5(x3)5?

2 Answers
Aug 2, 2018

" "
color(red)( (x^3)^5=x^15(x3)5=x15

Explanation:

" "
Using the exponent formula: color(blue)((x^m)^n=x^(mn)(xm)n=xmn,

we can simplify

color(green)( (x^3)^5(x3)5 as

rArr x^[(3)(5)]x(3)(5)

rArr x^15x15

Hence,

color(red)( (x^3)^5=x^15(x3)5=x15

Hope it helps.

Aug 2, 2018

x^(15)x15

Explanation:

"using the "color(blue)"law of exponents"using the law of exponents

•color(white)(x)(a^m)^n=a^((mxxn))x(am)n=a(m×n)

(x^3)^5=x^((3xx5))=x^(15)(x3)5=x(3×5)=x15