=> 1/2(m - 6) = 3 + m/5⇒12(m−6)=3+m5
=> (m - 6)/2 = 3 + m/5⇒m−62=3+m5
=> m/2 - 6/2 = 3 + m/5⇒m2−62=3+m5
=> m/2 - 3 = 3 + m/5⇒m2−3=3+m5
=> m/2 - m/5 = 3 + 3⇒m2−m5=3+3
=> m[1/2 - 1/5] = 6⇒m[12−15]=6
=> m[(1/2 × 5/5) - (1/5 × 2/2)] = 6⇒m[(12×55)−(15×22)]=6
=> m[5/10 - 2/10] = 6⇒m[510−210]=6
=> m[(5 - 2)/10] = 6⇒m[5−210]=6
=> m(3/10) = 6⇒m(310)=6
=> m = 6 × 10/(3) = cancel(3) × 2 × 10/cancel(3)
=> m = 20