Let X=((a),(b),(c))
Using Cramer's Rule to solve the augmented matrix
color(white)("XXXXXXXXXXXxX")acolor(white)("XX")bcolor(white)("Xx")c color(white)("XXX")k
color(white)("XXX")((M,"|",k))=((1,-6,0,"|",1),(0,1,-7,"|",4),(3,0,2,"|",11))
Calculating the Determinants:
color(white)("XXX")Det(M)= |(1,-6,0),(0,1,-7),(3,0,2)|
color(white)("XXXXXXX")=1color(white)("X")[(1xx2)-(0xx-7)]
color(white)("XXXXXXXX")-color(white)("X")0[(-6xx2)-(0xx0)]
color(white)("XXXXXXXX")+3color(white)("X")[((-6)xx(-7))-(0xx0)]
color(white)("XXXXXXX")=128
Similarly
color(white)("XXX")Det(M_a)=512
color(white)("XXX")Det(M_b)=64
color(white)("XXX")Det(M_c)=-64
By Cramer's Rule:
color(white)("XXX")a=(Det(M_a))/(Det(M))=512/128=4
color(white)("XXX")b=(Det(M_b))/(Det(M))=64/128=0.5
color(white)("XXX")c=(Det(M_c))/(Det(M))=(-64)/128=-0.5
Confession: I used as spreadsheet to do the detailed arithmetic work