How do you solve 10^(1-4m)=18?

1 Answer
Apr 14, 2018

color(blue)(m=(1-log_(10)(18))/4~~-0.6381812628)

Explanation:

Using logarithms to the base 10.

From the laws of logarithms:

log_b(a^c)=clog_b(a)

And, if:

y=log_ba<=>b^y=a

log_b(b^y)=log_b(a)

ylog_b(b)=log_b(a)

y=(log_b(a))/(log_b(b)

But: y=log_b(a)

log_b(a)=(log_b(a))/(log_b(b)

Rearranging:

log_b(b)=(log_b(a))/(log_b(a))=1

Using these ideas:

10^(1-4m)=18

Taking base 10 logarithms:

log_(10)(10^(1-4m))=log_(10)(18)

(1-4m)log_(10)(10)=log_(10)(18)

1-4m=log_(10)(18)

color(blue)(m=(1-log_(10)(18))/4~~-0.6381812628)