Using logarithms to the base 1010.
From the laws of logarithms:
log_b(a^c)=clog_b(a)logb(ac)=clogb(a)
And, if:
y=log_ba<=>b^y=ay=logba⇔by=a
log_b(b^y)=log_b(a)logb(by)=logb(a)
ylog_b(b)=log_b(a)ylogb(b)=logb(a)
y=(log_b(a))/(log_b(b)y=logb(a)logb(b)
But: y=log_b(a)y=logb(a)
log_b(a)=(log_b(a))/(log_b(b)logb(a)=logb(a)logb(b)
Rearranging:
log_b(b)=(log_b(a))/(log_b(a))=1logb(b)=logb(a)logb(a)=1
Using these ideas:
10^(1-4m)=18101−4m=18
Taking base 10 logarithms:
log_(10)(10^(1-4m))=log_(10)(18)log10(101−4m)=log10(18)
(1-4m)log_(10)(10)=log_(10)(18)(1−4m)log10(10)=log10(18)
1-4m=log_(10)(18)1−4m=log10(18)
color(blue)(m=(1-log_(10)(18))/4~~-0.6381812628)m=1−log10(18)4≈−0.6381812628