How do you solve 10^(1-4m)=181014m=18?

1 Answer
Apr 14, 2018

color(blue)(m=(1-log_(10)(18))/4~~-0.6381812628)m=1log10(18)40.6381812628

Explanation:

Using logarithms to the base 1010.

From the laws of logarithms:

log_b(a^c)=clog_b(a)logb(ac)=clogb(a)

And, if:

y=log_ba<=>b^y=ay=logbaby=a

log_b(b^y)=log_b(a)logb(by)=logb(a)

ylog_b(b)=log_b(a)ylogb(b)=logb(a)

y=(log_b(a))/(log_b(b)y=logb(a)logb(b)

But: y=log_b(a)y=logb(a)

log_b(a)=(log_b(a))/(log_b(b)logb(a)=logb(a)logb(b)

Rearranging:

log_b(b)=(log_b(a))/(log_b(a))=1logb(b)=logb(a)logb(a)=1

Using these ideas:

10^(1-4m)=181014m=18

Taking base 10 logarithms:

log_(10)(10^(1-4m))=log_(10)(18)log10(1014m)=log10(18)

(1-4m)log_(10)(10)=log_(10)(18)(14m)log10(10)=log10(18)

1-4m=log_(10)(18)14m=log10(18)

color(blue)(m=(1-log_(10)(18))/4~~-0.6381812628)m=1log10(18)40.6381812628