How do you solve 10z^2+38z-8=0?

1 Answer
Feb 24, 2016

x=1/5,4

Explanation:

color(blue)(10z^2+38z-8=0

Divide each term by 2

rarr5z^2+19z-4=0

So, this is in the form of a Quadratic equation
(in form ax^2+bx+c=0)

Use Quadratic formula to solve

Quadratic formula:

color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)

Where,

In this case, color(red)(a=5,b=19,c=-4

Substitute the values

rarrx=(-(19)+-sqrt(19^2-4(5)(-4)))/(2(5))

rarrx=(-19+-sqrt(361-4(-20)))/(10)

rarrx=(-19+-sqrt(361+80))/(10)

rarrx=(-19+-sqrt441)/10

rarrcolor(orange)(x=(-19+21)/(10)

Now we have two values for x

1)color(pink)(x=(-19+21)/10

2)color(pink)(x=(-19-21)/10

Solve for the two values:

rArr1)color(green)(x=(-19+21)/10=2/10=1/5

rArr2)color(green)(x=(-19-21)/10=-40/10=-4

So, x=1/5,4