How do you solve 12y^2-5y=212y25y=2?

1 Answer
May 20, 2016

The solution is:
color(blue)(y=2/3, y=-1/4y=23,y=14

Explanation:

12y^2 - 5y =212y25y=2

12y^2 - 5y - 2 = 0 12y25y2=0

The equation is of the form color(blue)(ay^2+by+c=0ay2+by+c=0 where:

a=12, b=-5, c=-2a=12,b=5,c=2

The Discriminant is given by:

Delta=b^2-4*a*c

= (-5)^2-(4* 12 * (-2))

= 25 + 96 = 121

The solutions are normally found using the formula
=(-b+-sqrtDelta)/(2*a)

y = (-(-5)+-sqrt(121))/(2*12) = (5+-11)/24

y = (5 + 11 ) / 24 = 16/24 = 2/3

y = (5 - 11 ) / 24 = -6/24 = -1/4