How do you solve |16 + t| = 2t - 3|16+t|=2t3?

1 Answer
Aug 3, 2016

t=19

Explanation:

abs(16+t)=2t-3|16+t|=2t3

abs(x) |x|is distance from the origin
enter image source here

(16+t)=2t-3 or -(16t+t)=2t-3(16+t)=2t3or(16t+t)=2t3
Take (16+t)=2t-3 (16+t)=2t3
16+3=2t-t16+3=2tt
19=t19=t
t=19t=19
Take (16+t)=-(2t-3)(16+t)=(2t3)
16+t=-2t+316+t=2t+3
16-3=-2t-t163=2tt
13=-3t13=3t
t=-13/3t=133

plug t=19plugt=19 in the original equation
abs(16+19)=2(19)-3|16+19|=2(19)3
abs(35)=35|35|=35

35=3535=35
So t=19 satisfies the original equation.

Put t=-13/3 in the original equation
abs(16-(13/3))=2(-13/3)-316(133)=2(133)3
abs ((48-13)/3)=-(26/3)-348133=(263)3
abs(35/3)=(-26-9)/3353=2693
35/3=-35/3353=353Left and right hand side are not same
so t=-13/3 should not satisfies the original equation
so it is extraneous solution.
t=19