How do you solve 2^(8x-3) = 5^(6x-9) ?
1 Answer
Feb 16, 2017
Explanation:
For
5=2^(log_2 5)
Thus
color(white)=>2^(8x-3)=5^(6x-9)
=>2^(8x-3)=(2^(log_2 5))^(6x-9)
=>2^(8x-3)=2^((log_2 5)(6x-9))
=>8x-3=(log_2 5)(6x-9)
=>8x-3=6xlog_2 5-9log_2 5
=>8x-6xlog_2 5=3-9log_2 5
=>x(8-6log_2 5)=3-9log_2 5
=>x=(3-9log_2 5)/(8-6log_2 5)
Another way:
2=5^(log_5 2)
So
color(white)=>2^(8x-3)=5^(6x-9)
=>5^((log_5 2)(8x-3))=5^(6x-9)
=>8xlog_5 2-3log_5 2 = 6x-9
=>x(8log_5 2-6)=3log_5 2 -9
=>x=(3log_5 2 -9)/(8log_5 2-6)