How do you solve 2^(8x-3) = 5^(6x-9) ?

1 Answer
Feb 16, 2017

x=(3-9log_2 5)/(8-6log_2 5)=(3log_5 2 -9)/(8log_5 2-6).

Explanation:

For a>0, if a^b=a^c then b=c.

5=2^(log_2 5)

Thus

color(white)=>2^(8x-3)=5^(6x-9)
=>2^(8x-3)=(2^(log_2 5))^(6x-9)
=>2^(8x-3)=2^((log_2 5)(6x-9))

=>8x-3=(log_2 5)(6x-9)
=>8x-3=6xlog_2 5-9log_2 5

=>8x-6xlog_2 5=3-9log_2 5
=>x(8-6log_2 5)=3-9log_2 5

=>x=(3-9log_2 5)/(8-6log_2 5)

Another way:

2=5^(log_5 2)

So

color(white)=>2^(8x-3)=5^(6x-9)

=>5^((log_5 2)(8x-3))=5^(6x-9)

=>8xlog_5 2-3log_5 2 = 6x-9

=>x(8log_5 2-6)=3log_5 2 -9

=>x=(3log_5 2 -9)/(8log_5 2-6)