How do you solve 2^(x+1)=3^x?

2 Answers
Feb 17, 2015

I would write it as:
2^x*2^1=3^x
(2^x)/(3^x)=1/2
(2/3)^x=1/2
take the log of both sides:
ln(2/3)^x=ln(1/2)
xln(2/3)=ln(1/2)
x=1.71

Feb 19, 2015

The answer is: x=ln2/(ln3-ln2).

2^(x+1)=3^xrArrln2^(x+1)=ln3^xrArr(x+1)ln2=xln3rArr

xln2+ln2=xln3rArrx(ln2-ln3)=-ln2rArrx=-ln2/(ln2-ln3)=ln2/(ln3-ln2).