How do you solve 2a^2 + 8a − 5 = 0 by completing the square?

1 Answer
Jul 6, 2015

a =+-sqrt(13/2)-2

Explanation:

First, we put the constant in the right-hand side :
2a^2+8a-5=0
<=>2a^2+8a=5

Then we want to transform 2a^2+8a to something like (a+b)^2

Recall : (color(blue)x+color(red)y)^2 = color(blue)(x^2) + color(green)2*color(blue)xcolor(red)y + color(red)(y^2)

Here we have 2a^2 + 8a
<=> 2xx(color(blue)(a^2)+4a)
<=> 2xx(color(blue)(a^2)+color(green)2*color(blue)a*color(red)2) (Then "y" = 2)
<=> 2xx(color(blue)(a^2)+color(green)2*color(blue)a*color(red)2+color(red)(2^2)-2^2) (We added and subtract "y^2" for factorize later)

<=> 2xx((a+2)^2-4)

Put the last expression inside the equality :

2a^2+8a=5

<=> 2xx((a+2)^2-4)=5

<=> 2xx(a+2)^2 - 8 = 5

<=> 2xx(a+2)^2 = 13

<=>(a+2)^2 = 13/2

<=>a+2 = sqrt(13/2) or a+2 = -sqrt(13/2)

Then a =+-sqrt(13/2)-2