How do you solve 2c^2 - 7c = -52c27c=5?

2 Answers
Apr 5, 2016

1 and 5/2

Explanation:

y = 2c^2 - 7c + 5 = 0y=2c27c+5=0.
Since a + b + c = 0, use shortcut. The 2 real rots are: 1 and c/a = 5/2ca=52

Apr 5, 2016

x=5/2,1x=52,1

Explanation:

color(blue)(2c^2-7c=-52c27c=5

Add 55 both sides

rarr2c^2-7c+5=-5+52c27c+5=5+5

rarr2c^2-7c+5=02c27c+5=0

Now,this is a trinomial.

So,

We can solve this by factoring or using Quadratic equation

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Factoring

color(purple)(2c^2-7c+5=02c27c+5=0

Factor the equation

If you have any problem with factoring trinomials,Watch this video:

rarr(2x-5)(x-1)=0(2x5)(x1)=0

Now we can say that

1)color(orange)((x-1)=01)(x1)=0

2)color(indigo)((2x-5)=02)(2x5)=0

Solve for both of the equations

1)color(orange)(x-1=01)x1=0

color(green)(rArrx=1x=1

2)color(indigo)(2x-5=02)2x5=0

rarr2x=52x=5

color(green)(rArrx=5/2x=52

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Using Quadratic formula

color(purple)(2c^2-7+5=02c27+5=0

This is a Quadratic equation (in form ax^2+bx+c=0ax2+bx+c=0)

Quadratic formula

color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

Remember that a,bandca,bandc are the coefficients

So,

color(violet)(a=2,b=-7,c=5a=2,b=7,c=5

rarrx=(-(-7)+-sqrt(-7^2-4(2)(5)))/(2(2))x=(7)±724(2)(5)2(2)

rarrx=(7+-sqrt(49-4(40)))/(4)x=7±494(40)4

rarrx=(7+-sqrt(49-40))/(4)x=7±49404

rarrx=(7+-sqrt(9))/(4)x=7±94

rarrx=(7+-3)/(4)x=7±34

Now we have two solutions

1)color(orange)(x=(7+3)/(4)=10/4=5/21)x=7+34=104=52

2)color(indigo)(x=(7-3)/4=4/4=12)x=734=44=1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:.color(blue)(ul bar |x=5/2,1|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x=52,1−−−−−−−