How do you solve 2log_6 4-1/4log_6 16=log_6 x2log6414log616=log6x?

1 Answer
Mar 15, 2018

x = 8x=8

Explanation:

We have: 2 log_(6)(4) - frac(1)(4) log_(6)(16) = log_(6)(x)2log6(4)14log6(16)=log6(x)

Let's begin this by expressing - frac(1)(4) log_(6)(16)14log6(16) in terms of an argument of 44:

Rightarrow 2 log_(6)(4) - frac(1)(4) log_(6)(4^(2)) = log_(6)(x)2log6(4)14log6(42)=log6(x)

Rightarrow 2 log_(6)(4) - frac(2)(4) log_(6)(4) = log_(6)(x)2log6(4)24log6(4)=log6(x)

Rightarrow 2 log_(6)(4) - frac(1)(2) log_(6)(4) = log_(6)(x)2log6(4)12log6(4)=log6(x)

Then, we can subtract the like terms on the left-hand side of the equation:

Rightarrow (2 - frac(1)(2))log_(6)(4) = log_(6)(x)(212)log6(4)=log6(x)

Rightarrow frac(3)(2) log_(6)(4) = log_(6)(x)32log6(4)=log6(x)

Rightarrow log_(6)(4^(frac(3)(2))) = log_(6)(x)log6(432)=log6(x)

Now, both sides of the equation are in terms of the logarithm of base 66.

We can cancel these logarithms out by exponentiating both sides by 66:

Rightarrow 6^(log_(6)(4^(frac(3)(2)))) = 6^(log_(6)(x))6log6(432)=6log6(x)

Rightarrow 4^(frac(3)(2)) = x432=x

therefore x = 8