We can use the quadratic equation to solve this problem:
The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(2) for color(red)(a)
color(blue)(-3) for color(blue)(b)
color(green)(-2) for color(green)(c) gives:
p = (-color(blue)(-3) +- sqrt(color(blue)(-3)^2 - (4 * color(red)(2) * color(green)(-2))))/(2 * color(red)(2))
p = (color(blue)(3) +- sqrt(9 - (-16)))/4
p = (color(blue)(3) +- sqrt(9 + 16))/4
p = (color(blue)(3) +- sqrt(25))/4
p = (color(blue)(3) - 5)/4; p = (color(blue)(3) + 5)/4
p = -2/4; p = 8/4
p = -1/2; p = 2