How do you solve # 2sin^2(x)+cos(x)=1# over the interval 0 to 2pi?

1 Answer
Mar 3, 2016

#0, (2pi)/3, (4pi)/3, and 2pi#

Explanation:

Replace in the equation #sin^2 x# by #(1 - cos^2 x) #-->
#2 - 2cos^2 x + cos x = 1#
#2cos^2 x - cos x - 1 = 0#.
Solve this equation for cos x.
Since a + b + c = 0, use shortcut. The 2 real roots are; cos x = 1 and #cos x = c/a = -1/2#
a. #cos x = 1# --> x = 0, and #x = 2pi#
b. #cos x = -1/2# --> #x = pi/3# and #x = -pi/3 (or (4pi)/3)#
Answer for interval #(0, 2pi)#:
#0, (2pi)/3, (4pi)/3, 2pi.#
Check.
If x = (2pi)/3 --> 2sin^2 x = 3/2 --> cos x = -1.2 --> 3/2 - 1/2 = 1. OK
If x = (4pi)/3 --> 2sin^2 x = 3/2 --> cos x = -1/2 --> 3/2 - 1/2 = 1. OK