How do you solve 2sin^2(x)+cos(x)=1 over the interval 0 to 2pi?

1 Answer
Mar 3, 2016

0, (2pi)/3, (4pi)/3, and 2pi

Explanation:

Replace in the equation sin^2 x by (1 - cos^2 x) -->
2 - 2cos^2 x + cos x = 1
2cos^2 x - cos x - 1 = 0.
Solve this equation for cos x.
Since a + b + c = 0, use shortcut. The 2 real roots are; cos x = 1 and cos x = c/a = -1/2
a. cos x = 1 --> x = 0, and x = 2pi
b. cos x = -1/2 --> x = pi/3 and x = -pi/3 (or (4pi)/3)
Answer for interval (0, 2pi):
0, (2pi)/3, (4pi)/3, 2pi.
Check.
If x = (2pi)/3 --> 2sin^2 x = 3/2 --> cos x = -1.2 --> 3/2 - 1/2 = 1. OK
If x = (4pi)/3 --> 2sin^2 x = 3/2 --> cos x = -1/2 --> 3/2 - 1/2 = 1. OK