How do you solve 2sin^2x - cosx = 1 over the interval 0 to 2pi?

1 Answer

x=60^@, 300^@, 180^@" " or
x=pi/3, (5pi)/3, pi

Explanation:

Start from the given 2 sin^2 x - cos x = 1

note that, sin^2 x+cos^2 x=1 and sin^2 x=1-cos^2 x

and 2 sin^2 x - cos x = 1

is also 2*(1-cos^2 x)-cos x=1

and

2-2cos^2 x-cos x=1

2 cos^2 x + cos x-2+1=0

2 cos^2 x + cos x-1=0

use color(red)("Quadratic Equation")

cos x=(-b+-sqrt(b^2-4ac))/(2a)

2 cos^2 x + cos x-1=0

from 2 cos^2 x + 1*cos x-1=0

Let a=2, b=1, c=-1

cos x=(-b+-sqrt(b^2-4ac))/(2a)

cos x=(-1+-sqrt(1^2-4*(2)*(-1)))/(2*2)

cos x=(-1+-3)/4

cos x_1=1/2 and cos x_2=-1

x_1=60^@, 300^@
x_2=180^@

God bless America ....