How do you solve (2x+1) / (x-9) >= 0?

1 Answer
Mar 1, 2017

The solution is x in ]-oo, -1/2]uu]9,+oo[

Explanation:

We solve this inequality with a sign chart

Let f(x)=(2x+1)/(x-9)

We can now build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-1/2color(white)(aaaaaa)9color(white)(aaaaaaaa)+oo

color(white)(aaaa)2x+1color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)||color(white)(aaaa)+

color(white)(aaaa)x-9color(white)(aaaa)-color(white)(aaaaaa)-color(white)(aaa)||color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaaa)-color(white)(aaa)||color(white)(aaaa)+

Therefore,

f(x)>=0 when x in ]-oo, -1/2]uu]9,+oo[