How do you solve 2x^2 + 1 = 4x?

1 Answer
Aug 7, 2015

(1 + sqrt(2)/2), (1 - sqrt(2)/2)

Explanation:

2x^2 + 1 = 4x

Therefore: 2x^2 -4x +1 = 0

Use quadratic formula:

If ax^2 + bx + c = 0

Then x_1 = {-b + sqrt(b^2 - 4ac))/(2a)

And x_2 = {-b - sqrt(b^2 - 4ac)]/(2a)

In this case a=2, b=-4, c=1

x_1 = (-(-4) +sqrt((-4)^2-4 * (2) * (1)))/(2 * (2))

= (4 + sqrt(16-8))/4

= (4 + sqrt(8)]/4

=(4 + sqrt(2*2*2))/4

=(4 + 2sqrt(2))/4

= 1 + sqrt(2)/2

Similarly:

x_2 = 1 - sqrt(2)/2