How do you solve 2x^2 - 15x = 82x215x=8?

1 Answer
Jan 31, 2017

The solutions are S={-1/2, 8}S={12,8}

Explanation:

Let's rewrite the equation

2x^2-15x-8=02x215x8=0

And compare this to the quadratic equation

ax^2+bx+c=0ax2+bx+c=0

We start by calculating the discriminant

Delta=b^2-4ac=(-15)^2-4(2)(-8)=225+64=289

The solutions are

x=(-b+-sqrtDelta)/(2a)

x_1=(15+sqrt289)/(2*2)=(15+17)/4=8

x_2=(15-17)/(2*2)=-2/4=-1/2