First, subtract color(red)(3x)3x and color(blue)(9)9 from each side of the equation to put the quadratic equation in standard form:
2x^2 - color(red)(3x) - color(blue)(9) = 3x + 9 - color(red)(3x) - color(blue)(9)2x2−3x−9=3x+9−3x−9
2x^2 - 3x - 9 = 3x - color(red)(3x) + 9 - color(blue)(9)2x2−3x−9=3x−3x+9−9
2x^2 - 3x - 9 = 0 + 02x2−3x−9=0+0
2x^2 - 3x - 9 = 02x2−3x−9=0
Next, factor the quadratic equation:
(2x + 3)(x - 3) = 0(2x+3)(x−3)=0
Now, solve each term for 00:
Solution 1)
2x + 3 = 02x+3=0
2x + 3 - color(red)(3) = 0 - color(red)(3)2x+3−3=0−3
2x + 0 = -32x+0=−3
2x = -32x=−3
(2x)/color(red)(2) = -3/color(red)(2)2x2=−32
(color(red)(cancel(color(black)(2)))x)/cancel(color(red)(2)) = -3/2
x = -3/2
Solution 2)
x - 3 = 0
x - 3 + color(red)(3) = 0 + color(red)(3)
x - 0 = 3
x = 3
(2x)/color(red)(2) = -3/color(red)(2)
The solution is: x = -3/2 and x = 3