How do you solve 2x^2+4x-5=02x2+4x−5=0?
1 Answer
Use the quadratic formula to find:
x = -1+-sqrt(14)/2x=−1±√142
Explanation:
This has discriminant
Delta = b^2-4ac = 4^2-(4*2*(-5)) = 16+40 = 56 = 2^2*14
This is positive, but not a perfect square. So our quadratic equation has Real irrational roots.
We can find the roots using the quadratic formula:
x = (-b+-sqrt(b^2-4ac))/(2a)
=(-b+-sqrt(Delta))/(2a)
=(-4+-sqrt(56))/(2*2)
=(-4+-2sqrt(14))/4
=-1+-sqrt(14)/2
Alternative Method
Multiply through by
a^2-b^2 = (a-b)(a+b)
with
0 = 4x^2+8x-10
=(2x+2)^2-4-10
=(2x+2)^2-(sqrt(14))^2
=((2x+2)-sqrt(14))((2x+2)+sqrt(14))
=(2x+2-sqrt(14))(2x+2+sqrt(14))
=(2(x+1-sqrt(14)/2))(2(x+1+sqrt(14)/2))
=4(x+1-sqrt(14)/2)(x+1+sqrt(14)/2)
Hence