How do you solve 2x^2+6x+33=0?
1 Answer
Oct 23, 2016
Explanation:
2x^2+6x+33 = 0
This is in the form:
ax^2+bx+c = 0
with
The discriminant
Delta = b^2-4ac = color(blue)(6)^2-4(color(blue)(2))(color(blue)(33)) = 36 - 264 = -228 = -2^2*57
Since
x = (-b+-sqrt(b^2-4ac))/(2a)
color(white)(x) = (-b+-sqrt(Delta))/(2a)
color(white)(x) = (-6+-sqrt(-2^2*57))/(2*2)
color(white)(x) = (-6+-2sqrt(57)i)/4
color(white)(x) = -3/2+-sqrt(57)/2i