How do you solve 2x^2+6x+33=0?

1 Answer
Oct 23, 2016

x = -3/2+-sqrt(57)/2i

Explanation:

2x^2+6x+33 = 0

This is in the form:

ax^2+bx+c = 0

with a = 2, b = 6 and c = 33.

The discriminant Delta is given by the formula:

Delta = b^2-4ac = color(blue)(6)^2-4(color(blue)(2))(color(blue)(33)) = 36 - 264 = -228 = -2^2*57

Since Delta < 0 this quadratic has a Complex conjugate pair of roots, which we can find using the quadratic formula:

x = (-b+-sqrt(b^2-4ac))/(2a)

color(white)(x) = (-b+-sqrt(Delta))/(2a)

color(white)(x) = (-6+-sqrt(-2^2*57))/(2*2)

color(white)(x) = (-6+-2sqrt(57)i)/4

color(white)(x) = -3/2+-sqrt(57)/2i