How do you solve 2x^2 + 8x + 7 = 0?
1 Answer
Mar 26, 2016
x = -2+-sqrt(2)/2
Explanation:
Multiply by
a^2-b^2 = (a-b)(a+b)
with
0 = 4x^2+16x+14
=(2x+4)^2-16+14
=(2x+4)^2-(sqrt(2))^2
=((2x+4)-sqrt(2))((2x+4)+sqrt(2))
=(2x+4-sqrt(2))(2x+4+sqrt(2))
=(2(x+2-sqrt(2)/2))(2(x+2+sqrt(2)/2))
=4(x+2-sqrt(2)/2)(x+2+sqrt(2)/2)
Hence:
x = -2+-sqrt(2)/2
Quadratic Formula
This has zeros given by the quadratic formula:
x = (-b+-sqrt(b^2-4ac))/(2a)
=(-8+-sqrt(8^2-(4*2*7)))/(2*2)
=(-8+-sqrt(64-56))/4
=(-8+-sqrt(8))/4
=(-8+-sqrt(2^2*2))/4
=(-8+-2sqrt(2))/4
=-2+-sqrt(2)/2