How do you solve 2x^2+9x+10=0?

2 Answers
Dec 22, 2016

-5/2 and -2

Explanation:

Use improved quadratic formula (Socratic Search)
y = 2x^2 + 9x + 10 = 0
Both roots are negative. (rule of signs)
D = d^2 = b^2 - 4ac = 81 - 80 = 1 --> d = +- 1
There are 2 real roots:
x = -b/(2a) +- d/(2a) = - 9/4 +- 1/4 = (-9 +- 1)/4
x1 = -10/4 = -5/2 and x2 = -8/4 = -2

Dec 22, 2016

x = -2" " or " "x = -5/2

Explanation:

Given:

2x^2+9x+10 = 0

We can use an AC method.

Find a pair of factors of AC=2*10=20 with sum B=9

The pair 5, 4 works.

Use this pair to split the middle term and factor by grouping:

0 = 2x^2+9x+10

color(white)(0) = 2x^2+5x+4x+10

color(white)(0) = (2x^2+5x)+(4x+10)

color(white)(0) = x(2x+5)+2(2x+5)

color(white)(0) = (x+2)(2x+5)

Hence solutions:

x = -2" " or " "x = -5/2