How do you solve 2x^3+4+2i=0?
1 Answer
The roots are:
x_1 = root(3)(2+i)
x_2 = omega root(3)(2+i)
x_3 = omega^2 root(3)(2+i)
Explanation:
Given:
2x^3+4+2i=0
Divide through by
x^3+2+i = 0
Subtract
x^3 = 2+i
This has roots:
x_1 = root(3)(2+i)
x_2 = omega root(3)(2+i)
x_3 = omega^2 root(3)(2+i)
where
If you prefer these roots in
First note that:
abs(2+i) = sqrt(2^2+1^2) = sqrt(5)
Arg(2+i) = tan^(-1)(1/2)
Hence, using de Moivre's formula:
x_1 = root(6)(5)cos(1/3 tan^(-1) (1/2)) + i root(6)(5)sin(1/3 tan^(-1) (1/2))
x_2 = root(6)(5)cos(1/3 tan^(-1) (1/2)+(2pi)/3) + i root(6)(5)sin(1/3 tan^(-1) (1/2)+(2pi)/3)
x_3 = root(6)(5)cos(1/3 tan^(-1) (1/2)+(4pi)/3) + i root(6)(5)sin(1/3 tan^(-1) (1/2)+(4pi)/3)