How do you solve #|2x - 3| = |x + 2| #?
1 Answer
Apr 8, 2017
Explanation:
There are 2 possible solutions to the equation.
#2x-3=color(red)(+-)(x+2)#
#color(blue)"first solution"#
#2x-3=x+2#
#"subtract x from both sides."#
#2x-x-3=cancel(x)cancel(-x)+2#
#rArrx-3=2#
#"add 3 to both sides."#
#xcancel(-3)cancel(+3)=2+3#
#rArrx=5#
#color(blue)"second solution"#
#2x-3=-x-2#
#rArr3x=1#
#rArr x=1/3#
#color(blue)"As a check"# Substitute these values into the equation and if the left side is equal to the right side then they are the solutions.
#"left side "=|(2xx5)-3|=|7|=7#
#"right side "=|5+2|=|7|=7#
#"left side "=|2/3-3|=|-2 1/3|=2 1/3#
#"right side "=|1/3+2|=|2 1/3|=2 1/3#
#rArrx=1/3" or " x=5" are the solutions"#