How do you solve 2x4+2+23i=0?

1 Answer
Feb 4, 2017

x=214(cos(5π12)+isin(5π12)) or 214(cos(π12)+isin(π12)) or 214(cos(5π12)isin(5π12)) or 214(cos(π12)isin(π12))

Explanation:

As 2x4+2+23i=0

x4=13i

Hence x=(13i)14

To find this we intend to use DeMoivres Theorem. So let us convert 13i in polar form.

As 13i=2, 13i=2(1232i)

or 13i=2(cos(2nπ+5π3)+isin(2nπ+5π3))

and x=(13i)14=214(cos(2nπ4+5π12)+isin(2nπ4+5π12))

= 214(cos(nπ2+5π12)+isin(nπ2+5π12))

Now choosing four values of n i.e. 0,1,2 and 3, we can get four roots of the equation 2x4+2+23i=0, which are

214(cos(5π12)+isin(5π12)),

214(cos(11π12)+isin(11π12)) i.e. 214(cos(π12)+isin(π12))

214(cos(17π12)+isin(17π12)) i.e. 214(cos(5π12)isin(5π12))

and 214(cos(23π12)+isin(23π12)) i.e. 214(cos(π12)isin(π12))