How do you solve 2x^4+2+2sqrt3i=02x4+2+23i=0?

1 Answer
Feb 4, 2017

x=2^(1/4)(cos((5pi)/12)+isin((5pi)/12))x=214(cos(5π12)+isin(5π12)) or 2^(1/4)(-cos((pi)/12)+isin((pi)/12))214(cos(π12)+isin(π12)) or 2^(1/4)(-cos((5pi)/12)-isin((5pi)/12))214(cos(5π12)isin(5π12)) or 2^(1/4)(cos((pi)/12)-isin((pi)/12))214(cos(π12)isin(π12))

Explanation:

As 2x^4+2+2sqrt3i=02x4+2+23i=0

x^4=-1-sqrt3ix4=13i

Hence x=(-1-sqrt3i)^(1/4)x=(13i)14

To find this we intend to use DeMoivres Theorem. So let us convert -1-sqrt3i13i in polar form.

As |-1-sqrt3i|=213i=2, -1-sqrt3i=2(-1/2-sqrt3/2i)13i=2(1232i)

or -1-sqrt3i=2(cos(2npi+(5pi)/3)+isin(2npi+(5pi)/3))13i=2(cos(2nπ+5π3)+isin(2nπ+5π3))

and x=(-1-sqrt3i)^(1/4)=2^(1/4)(cos((2npi)/4+(5pi)/12)+isin((2npi)/4+(5pi)/12))x=(13i)14=214(cos(2nπ4+5π12)+isin(2nπ4+5π12))

= 2^(1/4)(cos((npi)/2+(5pi)/12)+isin((npi)/2+(5pi)/12))214(cos(nπ2+5π12)+isin(nπ2+5π12))

Now choosing four values of nn i.e. 0,1,20,1,2 and 33, we can get four roots of the equation 2x^4+2+2sqrt3i=02x4+2+23i=0, which are

2^(1/4)(cos((5pi)/12)+isin((5pi)/12))214(cos(5π12)+isin(5π12)),

2^(1/4)(cos((11pi)/12)+isin((11pi)/12))214(cos(11π12)+isin(11π12)) i.e. 2^(1/4)(-cos((pi)/12)+isin((pi)/12))214(cos(π12)+isin(π12))

2^(1/4)(cos((17pi)/12)+isin((17pi)/12))214(cos(17π12)+isin(17π12)) i.e. 2^(1/4)(-cos((5pi)/12)-isin((5pi)/12))214(cos(5π12)isin(5π12))

and 2^(1/4)(cos((23pi)/12)+isin((23pi)/12))214(cos(23π12)+isin(23π12)) i.e. 2^(1/4)(cos((pi)/12)-isin((pi)/12))214(cos(π12)isin(π12))