As 2x4+2+2√3i=0
x4=−1−√3i
Hence x=(−1−√3i)14
To find this we intend to use DeMoivres Theorem. So let us convert −1−√3i in polar form.
As ∣∣−1−√3i∣∣=2, −1−√3i=2(−12−√32i)
or −1−√3i=2(cos(2nπ+5π3)+isin(2nπ+5π3))
and x=(−1−√3i)14=214(cos(2nπ4+5π12)+isin(2nπ4+5π12))
= 214(cos(nπ2+5π12)+isin(nπ2+5π12))
Now choosing four values of n i.e. 0,1,2 and 3, we can get four roots of the equation 2x4+2+2√3i=0, which are
214(cos(5π12)+isin(5π12)),
214(cos(11π12)+isin(11π12)) i.e. 214(−cos(π12)+isin(π12))
214(cos(17π12)+isin(17π12)) i.e. 214(−cos(5π12)−isin(5π12))
and 214(cos(23π12)+isin(23π12)) i.e. 214(cos(π12)−isin(π12))