How do you solve #2x^4+2+2sqrt3i=0#?

1 Answer
Feb 4, 2017

#x=2^(1/4)(cos((5pi)/12)+isin((5pi)/12))# or #2^(1/4)(-cos((pi)/12)+isin((pi)/12))# or #2^(1/4)(-cos((5pi)/12)-isin((5pi)/12))# or #2^(1/4)(cos((pi)/12)-isin((pi)/12))#

Explanation:

As #2x^4+2+2sqrt3i=0#

#x^4=-1-sqrt3i#

Hence #x=(-1-sqrt3i)^(1/4)#

To find this we intend to use DeMoivres Theorem. So let us convert #-1-sqrt3i# in polar form.

As #|-1-sqrt3i|=2#, #-1-sqrt3i=2(-1/2-sqrt3/2i)#

or #-1-sqrt3i=2(cos(2npi+(5pi)/3)+isin(2npi+(5pi)/3))#

and #x=(-1-sqrt3i)^(1/4)=2^(1/4)(cos((2npi)/4+(5pi)/12)+isin((2npi)/4+(5pi)/12))#

= #2^(1/4)(cos((npi)/2+(5pi)/12)+isin((npi)/2+(5pi)/12))#

Now choosing four values of #n# i.e. #0,1,2# and #3#, we can get four roots of the equation #2x^4+2+2sqrt3i=0#, which are

#2^(1/4)(cos((5pi)/12)+isin((5pi)/12))#,

#2^(1/4)(cos((11pi)/12)+isin((11pi)/12))# i.e. #2^(1/4)(-cos((pi)/12)+isin((pi)/12))#

#2^(1/4)(cos((17pi)/12)+isin((17pi)/12))# i.e. #2^(1/4)(-cos((5pi)/12)-isin((5pi)/12))#

and #2^(1/4)(cos((23pi)/12)+isin((23pi)/12))# i.e. #2^(1/4)(cos((pi)/12)-isin((pi)/12))#