How do you solve (-2x+5)^2 = -8(2x+5)2=8?

2 Answers
Jul 29, 2017

See a solution process below:

Explanation:

First, expand the term on the left using this special rule for multiplying quadratics:

(color(red)(x) + color(blue)(y))^2 = color(red)(x)^2 + 2color(red)(x)color(blue)(y) + color(blue)(y)^2(x+y)2=x2+2xy+y2

Substituting gives:

(color(red)(-2x) + color(blue)(5))^2 = -8(2x+5)2=8

(color(red)(-2x))^2 + (2 * color(red)(-2x) * color(blue)(5)) + color(blue)(5)^2 = -8(2x)2+(22x5)+52=8

4x^2 + (-20x) + 25 = -84x2+(20x)+25=8

4x^2 - 20x + 25 = -84x220x+25=8

We can next convert this to standard form:

4x^2 - 20x + 25 + color(red)(8) = -8 + color(red)(8)4x220x+25+8=8+8

4x^2 - 20x + 33 = 04x220x+33=0

We can now use the quadratic formula to find the solutions for xx. The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0ax2+bx+c=0, the values of xx which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))x=b±b2(4ac)2a

Substituting:

color(red)(4)4 for color(red)(a)a

color(blue)(-20)20 for color(blue)(b)b

color(green)(33)33 for color(green)(c)c gives:

x = (-(color(blue)(-20)) +- sqrt(color(blue)(-20)^2 - (4 * color(red)(4) * color(green)(33))))/(2 * color(red)(4))x=(20)±202(4433)24

x = (color(blue)(20) +- sqrt(400 - 528))/8x=20±4005288

x = (color(blue)(20) +- sqrt(-128))/8x=20±1288

x = (color(blue)(20) +- sqrt(64 * -2))/8x=20±6428

x = (color(blue)(20) +- sqrt(64)sqrt(-2))/8x=20±6428

x = (color(blue)(20) +- 8sqrt(-2))/8x=20±828

Or

x = color(blue)(20)/8 +- (8sqrt(-2))/8x=208±828

x = 5/2 +- sqrt(-2)x=52±2

Jul 29, 2017

No Real solutions;
within Complex numbers: x=2/5-sqrt(2)i" or "2/5+sqrt(2)ix=252i or 25+2i

Explanation:

Given
color(white)("xxx")(-2x+5)^2=-8xxx(2x+5)2=8

We note that any Real value squared must be >= 00
therefore this equation has No valid Real solutions

If we are dealing with Complex values, then
color(white)("xxx")(-2x+5)^2=-8xxx(2x+5)2=8

color(white)("xxx")4x^2-20x+25=-8xxx4x220x+25=8

color(white)("xxx")4x^2-20x+33=0xxx4x220x+33=0

Then applying the quadratic formula that tells us that an equation of the form: ax^2+bx+c=0ax2+bx+c=0
has solutions:
color(white)("xxx")x=(-b+-sqrt(b^2-4ac))/(2a)xxxx=b±b24ac2a

We have solutions:
color(white)("xxx")x=(20+-sqrt(400-4*4*33))/(2 * 4)xxxx=20±400443324

color(white)("xxx")=(20+-sqrt(-128))/8xxx=20±1288

color(white)("xxx")=(20+-8sqrt(2)i)/8xxx=20±82i8

color(white)("xxx")=5/2+-sqrt(2)ixxx=52±2i