How do you solve (2x)/(x-2)<=3 using a sign chart?

1 Answer
Jun 14, 2017

The solution is x in (-oo,2)uu [6,+oo)

Explanation:

We cannot do crossing over

Let's rearrange the inequality

(2x)/(x-2)<=3

(2x)/(x-2)-3<=0

(2x-3(x-2))/(x-2)<=0

(2x-3x+6)/(x-2)<=0

(6-x)/(x-2)<=0

Let f(x)=(6-x)/(x-2)

Let's build the sign chart

color(white)(aaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaaaa)2color(white)(aaaaaaa)6color(white)(aaaaaa)+oo

color(white)(aaaa)x-2color(white)(aaaaa)-color(white)(aaaa)||color(white)(aaa)+color(white)(a)0color(white)(aaaa)+

color(white)(aaaa)6-xcolor(white)(aaaaa)+color(white)(aaaa)||color(white)(aaa)+color(white)(a)0color(white)(aaaa)-

color(white)(aaaa)f(x)color(white)(aaaaaa)-color(white)(aaaa)||color(white)(aaa)+color(white)(a)0color(white)(aaaa)-

Therefore,

f(x)<=0 when x in (-oo,2)uu [6,+oo)