How do you solve 2y ^ { 2} - 5x - 12= 0?

1 Answer
Dec 5, 2016

y=+-sqrt(5/2x+6)

Explanation:

Taking it 1 step at a time so that you can see better what is going on

Using first principles (short cut method taken from this approach)

color(purple)("Step 1")

Add color(red)(5x) to both sides

color(blue)(2y^2-5x-12=0" "->" "2y^2color(red)(+5x)-5x-12=0color(red)(+5x))

" "2y^2" "+0" "-12=5x

" "2y^2-12=5x

...................................................................................................

color(purple)("Step 2")

Add color(red)(12) to both sides

color(blue)(2y^2-12=5x" "->" "2y^2color(red)(+12)-12=5xcolor(red)(+12) )

" "2y^2" "+0" "=5x+12

" "2y^2=5x+12

...................................................................................................

color(purple)("Step 3")

Divide both sides by 2 (same as color(red)(xx1/2))

color(blue)(2y^2=5x+12" "->" "2/(color(red)(2))y^2=5/(color(red)(2))x+12/(color(red)(2))

But 2/2=1 giving:" "y^2=5/2x+6

...................................................................................................

color(purple)("Step 4")

Square root both sides:" "sqrt(y^2)=sqrt(5/2x+6)

" "y=+-sqrt(5/2x+6)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(purple)(ul("Foot note"))

Using an example (-2)xx(-2)=+4
" "(+2)xx(+2) = +4

As both (-2)xx(-2)" and "(+2)xx(+2) both equal 4 then

sqrt(4) = "plus or minus "2 -> +-2

Which is why we end up with y=+-sqrt(5/2x+6)