How do you solve 3|2x + -5| + 3 = 423|2x+5|+3=42?

2 Answers

x=9 or x=-4x=9orx=4

Explanation:

Here, 3|2x+(-5)|+3=42,3|2x+(5)|+3=42,

Adding (-3)(3) both sides

3|2x+(-5)|+3+(-3)=42+(-3)3|2x+(5)|+3+(3)=42+(3)

=>3|2x+(-5)|=39,3|2x+(5)|=39,

Dividing both sides by 3

(cancel(3)|2x+(-5)|)/(cancel(3))=39/3=>|2x+(-5)|=13

2x+(-5)=13or2x+(-5)=-13

Adding 5 both sides

2x+(-5)+5=13+5or2x+(-5)+5=-13+5

=>2x=18 or 2x=-8=>x=9 or x=-4

Mar 18, 2018

x=-4,9

Explanation:

Solve:

3abs(2x+ -5)+3=42

Simplify the absolute value.

3abs(2x-5)+3=42

Subtract 3 from both sides of the equation.

3abs(2x-5)+3-3=42-3

Simplify.

3abs(2x-5)+0=39

3abs(2x-5)=39

Divide both sides by 3.

(cancel(3)^1abs(2x-5))/cancel(3)^1=cancel39^13/cancel(3)^1

Simplify.

abs(2x-5)=13

Since abs(+-a)=a, we can break the equation into two equations:

2x-5=13 and -(2x-5)=13

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Solve the first equation:

Add 5 to both sides of the equation.

2x-5+5=13+5

Simplify.

2x=18

Divide both sides by 2.

(cancel(2)^1x)/cancel(2)^1=cancel18^9/cancel2^1

Simplify.

x=9

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Solve the second equation:

-(2x-5)=13

Expand.

-2x+5=13

Subtract 5 from both sides.

-2x+5-5=13-5

Simplify.

-2x+0=8

-2x=8

Divide both sides by -2.

(cancel(-2)^1x)/(cancel(-2)^1)=cancel8^4/(cancel(-2)^1

Simplify.

x=-4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x=-4,9