First, multiply each side of the equation by #color(red)(28)# to eliminate the fractions while keeping the equation balanced. #color(red)(28)# is the lowest common denominator of the two fractions.
#color(red)(28)(-3/4x + 5/14) = color(red)(28) xx -2#
#(color(red)(28) xx -3/4x) + (color(red)(28) xx 5/14) = -56#
#(cancel(color(red)(28))7 xx -3/color(red)(cancel(color(black)(4)))x) + (cancel(color(red)(28))2 xx 5/color(red)(cancel(color(black)(14)))) = -56#
#-21x + 10 = -56#
Next, subtract #color(red)(10)# from each side of the equation to isolate the #x# term while keeping the equation balanced:
#-21x + 10 - color(red)(10) = -56 - color(red)(10)#
#-21x + 0 = -66#
#-21x = -66#
Now, divide each side of the equation by #color(red)(-21)# to solve for #x# while keeping the equation balanced:
#(-21x)/color(red)(-21) = (-66)/color(red)(-21)#
#(color(red)(cancel(color(black)(-21)))x)/cancel(color(red)(-21)) = (3 xx 22)/color(red)(3 xx 7)#
#x = (color(red)(cancel(color(black)(3))) xx 22)/color(red)(cancel(3) xx 7)#
#x = 22/7#