How do you solve 36^(x^2+9) = 216^(x^2+9)?
1 Answer
May 22, 2017
for any integer
Explanation:
Given:
36^(x^2+9) = 216^(x^2+9)
Divide both sides by
1 = 6^(x^2+9) = e^((x^2+9)ln 6)
From Euler's identity we can deduce:
(x^2+9)ln 6 = 2kpii
for any integer
So:
x^2+9 = (2kpii)/ln 6
Hence:
x = +-sqrt((2kpii)/ln 6-9)
If
x = +-sqrt(-9) = +-3i
Footnote
If you would like the other roots in
+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)