How do you solve 36^(x^2+9) = 216^(x^2+9)?

1 Answer
May 22, 2017

x=+-sqrt((2kpii)/ln 6-9)

for any integer k

Explanation:

Given:

36^(x^2+9) = 216^(x^2+9)

Divide both sides by 36^(x^2+9) to get:

1 = 6^(x^2+9) = e^((x^2+9)ln 6)

From Euler's identity we can deduce:

(x^2+9)ln 6 = 2kpii

for any integer k

So:

x^2+9 = (2kpii)/ln 6

Hence:

x = +-sqrt((2kpii)/ln 6-9)

If k=0 that gives us:

x = +-sqrt(-9) = +-3i

color(white)()
Footnote

If you would like the other roots in a+bi form, then you can use the formula derived in https://socratic.org/s/aEUsUcjD , namely that the square roots of a+bi are:

+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)