In matrix form:
#((3,1,1),(1,1,-1),(1,2,1)) ((u),(v),(w)) = ((9),(5),(9))#
Using Gaussian elimination, we can row reduce, so we set up the augmented matrix:
#((3,1,1),(1,1,-1),(1,2,1)) # # ((9),(5),(9))#
#R2 to R2 - R3 #
#((3,1,1),(0,-1,-2),(1,2,1)) # # ((9),(-4),(9))#
#R3 to R3 -1/3 R1 #
#((3,1,1),(0,-1,-2),(0,5/3,2/3)) # # ((9),(-4),(6))#
#R3 to R3 + 5/3 R2 #
#((3,1,1),(color(red)(0),-1,-2),(color(red)(0),color(red)(0),-8/3)) # # ((9),(-4),(-2/3))#
This is now upper triangular, we are in row echelon form. Now we back-substitute:
From the bottom row:
#-8/3 w = -2/3 #
#implies w = 1/4#
From the middle row:
#- v - 2 w =- 4 #
#implies v = 4 - 2w #
#implies v = 7/2#
From the top row:
#3u + v + w = 9#
#implies u = (9 - v - w)/3#
# = (9 - 7/2 - 1/4)/(3) #
#implies u = 7/4#
So:
#((u),(v),(w)) = ((7/4),(7/2),(1/4))#