In matrix form:
((3,1,1),(1,1,-1),(1,2,1)) ((u),(v),(w)) = ((9),(5),(9))
Using Gaussian elimination, we can row reduce, so we set up the augmented matrix:
((3,1,1),(1,1,-1),(1,2,1)) ((9),(5),(9))
R2 to R2 - R3
((3,1,1),(0,-1,-2),(1,2,1)) ((9),(-4),(9))
R3 to R3 -1/3 R1
((3,1,1),(0,-1,-2),(0,5/3,2/3)) ((9),(-4),(6))
R3 to R3 + 5/3 R2
((3,1,1),(color(red)(0),-1,-2),(color(red)(0),color(red)(0),-8/3)) ((9),(-4),(-2/3))
This is now upper triangular, we are in row echelon form. Now we back-substitute:
From the bottom row:
-8/3 w = -2/3
implies w = 1/4
From the middle row:
- v - 2 w =- 4
implies v = 4 - 2w
implies v = 7/2
From the top row:
3u + v + w = 9
implies u = (9 - v - w)/3
= (9 - 7/2 - 1/4)/(3)
implies u = 7/4
So:
((u),(v),(w)) = ((7/4),(7/2),(1/4))