How do you solve 3x^2 + 13x = 10?

1 Answer
Mar 26, 2018

See a solution process below:

Explanation:

First, subtract color(red)(10) from each side of the equation to put the equation in standard quadratic for while keeping the equation balanced:

3x^2 + 13x - color(red)(10) = 10 - color(red)(10)

3x^2 + 13x - 10 = 0

We can now use the quadratic equation to solve this problem:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(3) for color(red)(a)

color(blue)(13) for color(blue)(b)

color(green)(-10) for color(green)(c) gives:

x = (-color(blue)(13) +- sqrt(color(blue)(13)^2 - (4 * color(red)(3) * color(green)(-10))))/(2 * color(red)(3))

x = (-color(blue)(13) +- sqrt(169 - (12 * color(green)(-10))))/6

x = (-color(blue)(13) +- sqrt(169 - (-120)))/6

x = (-color(blue)(13) +- sqrt(169 + 120))/6

x = (-color(blue)(13) +- sqrt(289))/6

x = (-color(blue)(13) - 17)/6 and x = (-color(blue)(13) + 17)/6

x = -30/6 and x = 4/6

x = -5 and x = 2/3

The Solution Set Is: x = {-5, 2/3}