How do you solve #3x^2+6x-2=0# by completing the square?
1 Answer
Jul 1, 2017
# x = -1 +-sqrt(5/3)#
Explanation:
We have:
# 3x^2+6x-2=0 #
The standard steps to complete the square on quadratic expression are as follows:
Step 1 - Factor out the quadratic coefficient, thus:
# 3x^2+6x-2=3{x^2+2x-2/3} #
Step 2 - Factor
# 3x^2+6x-2 = 3{(x+2/2)^2-(2/2)^2-2/3} #
# " " = 3{(x+1)^2-1-2/3} #
# " " = 3{(x+1)^2-5/3} #
So now returning to the quadratic equation , we have;
# 3x^2+6x-2=0 #
# :. 3{(x+1)^2-5/3} = 0#
# :. (x+1)^2-5/3 = 0#
# :. (x+1)^2 = 5/3#
# :. x+1 = +-sqrt(5/3)#
# :. x = -1 +-sqrt(5/3)#