How do you solve 3x^2-8x-19=(x-1)^2?

1 Answer

x=5, -2

Explanation:

3x^2-8x-19=(x-1)^2

3x^2-8x-19=x^2-2x+1

3x^2color(red)(-x^2)-8xcolor(red)(+2x)-19color(red)(-1)=x^2color(red)(-x^2)-2xcolor(red)(+2x)+1color(red)(-1)

2x^2-6x-20=0

Let's use the quadratic formula to solve for x:

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(6+-sqrt((-6)^2-4(2)(-20)))/(2(2))

x=(6+-sqrt(36+160))/4

x=(6+-sqrt(196))/4

x=(6+-14)/4

x=20/4=5, =-8/4=-2

And we can check this by graphing both sides of the original equation (note the points of intersection at x=5, -2:

graph{(y-3x^2+8x+19)(y-(x-1)^2)=0 [-10, 10, -2.11, 26.78]}