How do you solve 3x^3 - 2[ x - ( 3 - 2x ) ] = 3 ( x - 2 )^23x32[x(32x)]=3(x2)2?

1 Answer
Jun 16, 2016

Real solution: x=1x=1

Complex solutions: x in {1, sqrt(2)i, -sqrt(2)i}x{1,2i,2i}

Explanation:

L.S. =3x^3-2[x-(3-2x)]=3x32[x(32x)]

color(white)("XXX")=3x^3-2[-3+3x]XXX=3x32[3+3x]

color(white)("XXX")=3x^3-6x+6XXX=3x36x+6

R.S. =3(x-2)^2=3(x2)2

color(white)("XXX")=3(x^2-4x+4)XXX=3(x24x+4)

color(white)("XXX")=3x^2-12x+12XXX=3x212x+12

Since L.S. = = R.S.
3x^3+6x+6=3x^2-12x+123x3+6x+6=3x212x+12

rarr x^3+2x+2=x^2-4x+4x3+2x+2=x24x+4

rarr color(green)(1)x^3-x^2+2x-color(blue)(2)=01x3x2+2x2=0

In the hope of finding rational roots we try the factors of color(blue)(2)/color(green)(1)21
enter image source here
and we find color(red)(x=1)x=1 is a root
rarr (x-1)(x1) is a factor.

(x^3-x^2+2x-2) div (x-1) = x^2+2(x3x2+2x2)÷(x1)=x2+2

(x^2+2)(x2+2) has no Real roots (i.e. no Real solutions for xx)

However, if we allow Complex solutions:
color(white)("XXX")x=+-sqrt(2)iXXXx=±2i