L.S. =3x^3-2[x-(3-2x)]=3x3−2[x−(3−2x)]
color(white)("XXX")=3x^3-2[-3+3x]XXX=3x3−2[−3+3x]
color(white)("XXX")=3x^3-6x+6XXX=3x3−6x+6
R.S. =3(x-2)^2=3(x−2)2
color(white)("XXX")=3(x^2-4x+4)XXX=3(x2−4x+4)
color(white)("XXX")=3x^2-12x+12XXX=3x2−12x+12
Since L.S. = = R.S.
3x^3+6x+6=3x^2-12x+123x3+6x+6=3x2−12x+12
rarr x^3+2x+2=x^2-4x+4→x3+2x+2=x2−4x+4
rarr color(green)(1)x^3-x^2+2x-color(blue)(2)=0→1x3−x2+2x−2=0
In the hope of finding rational roots we try the factors of color(blue)(2)/color(green)(1)21
and we find color(red)(x=1)x=1 is a root
rarr (x-1)→(x−1) is a factor.
(x^3-x^2+2x-2) div (x-1) = x^2+2(x3−x2+2x−2)÷(x−1)=x2+2
(x^2+2)(x2+2) has no Real roots (i.e. no Real solutions for xx)
However, if we allow Complex solutions:
color(white)("XXX")x=+-sqrt(2)iXXXx=±√2i