How do you solve 3x^5 = 6x^4 - 72x^3 =?

1 Answer
Jul 22, 2016

(1) : The Soln., in RR, x=0; & in CC, x=0, x=1+-isqrt23.

(2) : The Reqd. Value, (i.e., "=?" of the problem) in RR, =0; and, in CC, 0, or, -288(-11+-isqrt23).

Explanation:

Given that, 3x^5=6x^4-72x^3

rArr3x^5-6x^4+72x^3=0

rArr 3x^3(x^2-2x+24)=0

rArr x^3=0, or, x^2-2x+24=0

x^3=0 rArr x=0..........(1)

x^2-2x+24=0................(2)

rArrx^2-2x=-24

rArrx^2-2x+1=-24+1

rArr (x-1)^2=-23, which is not possible in RR

However, in CC, (x-1)^2=-23 rArr x-1=+-isqrt23

rArr x=1+-isqrt23

Hence, in RR, the reqd. value (i.e., "=?" of the problem)=0

While, in CC, the reqd. value=3x^5=0, if x=0, or,

if, x=1+-isqrt23, the reqd. value (i.e., "=?" of the problem)

6x^4-72x^3=6x^2(x^2-12x)=6(2x-24)(-24).........[by (2)]

=-24*6*2(x-12)=-288(1+-isqrt23-12)=-288(-11+-isqrt23)