How do you solve 3x-y=33xy=3 and -2x+y=22x+y=2 using matrices?

1 Answer
Aug 4, 2016

The Soln. is x=5, y=12x=5,y=12.

Explanation:

We can write the given system of eqns., using the Matrix Form, as :

[(3,-1),(-2,1)][(x), (y)]=[(3),(2)].............(1).

Let A=[(3,-1),(-2,1)] , X=[(x), (y)], and, B=[(3),(2)].

Then, (1) becomes, AX=B.

Now, we know from Algebra that the soln. of (1) exists iff A^-1 exists.

Also, A^-1 exists iff detA!=0, where,

detA=det|(3,-1),(-2,1)|=3-2=1!=0. Hence, A^-1 exists, and, so does the unique soln. of the eqns.

Now, A^-1=1/detA*adjA=1/1[(1,1),(2,3)]=[(1,1),(2,3)]

Therefore, the soln. is X=A^-1B=[(1,1),(2,3)][(3),(2)]

:. [(x), (y)]=[(1,1),(2,3)][(3),(2)]=[(5),(12)]

So, the Soln. is x=5, y=12.