How do you solve 4^(3x+2)times32^(x-2)=8^(3x-4)?

2 Answers
Sep 15, 2016

The soln. is x=-3.

Explanation:

4^(3x+2)xx32^(x-2)=8^(3x-4)

rArr (2^2)^(3x+2)*(2^5)^(x-2)=(2^3)^(3x-4)

rArr 2^(6x+4)*2^(5x-10)=2^(9x-12).........[(a^m)^n=a^(mn)]

rArr 2^(6x+4+5x-10)=2^(9x-12)...............[a^m*a^n=a^(m+n)]

rArr 2^(11x-6)=2^(9x-12)..............[a^m=a^n rArr m=n]

rArr 11x-6=9x-12

rArr 11x-9x=6-12

rArr 2x=-6

rArr x=-3

This root satisfy the eqn.

Hence, the soln. is x=-3.

Sep 15, 2016

x = - 3

Explanation:

We have: 4^(3 x + 2) times 32^(x - 2) = 8^(3 x - 4)

Let's express the numbers in terms of 2:

=> (2^(2))^(3 x + 2) times (2^(5))^(x - 2) = (2^(3))^(3 x - 4)

Using the laws of exponents:

=> 2^(6 x + 4) times 2^(5 x - 10) = 2^(9 x - 12)

=> 2^(6 x + 4 + 5 x - 10) = 2^(9 x - 12)

=> 2^(11 x - 6) = 2^(9 x - 12)

=> 11 x - 6 = 9 x - 12

=> 2 x = - 6

=> x = - 3

Therefore, the solution to the equation is x = - 3.