How do you solve 4|-6x + 6| + -3 = 93?

1 Answer
Dec 5, 2016

x = -3 and x = 5

Explanation:

When solving an absolute value problem the first step is to isolate the absolute value on one side of the equation:

4abs(-6x + 6) + -3 + 3 = 93 + 3

4abs(-6x + 6) + 0 = 96

4abs(-6x + 6) = 96

(4abs(-6x + 6))/4 = 96/4

(cancel(4)abs(-6x + 6))/cancel(4) = 24

abs(-6x + 6) = 24

Now because the absolute value function converts both negative and positive numbers to a negative number we must solve the term within the absolute value for both 24 and -24:

-6x + 6 = 24

-6x + 6 - 6 = 24 - 6

-6x + 0 = 18

-6x = 18

(-6x)/-6 = 18/(-6)

(cancel(-6)x)/cancel(-6) = -3

x = -3

and

-6x + 6 = -24

-6x + 6 - 6 = -24 - 6

-6x + 0 = -30

-6x = -30

(-6x)/-6 = (-30)/(-6)

(cancel(-6)x)/cancel(-6) = 5

x = 5