How do you solve 4x^2-9>0 using a sign chart?

1 Answer
Jul 6, 2017

Solution : x < -3/2 or x > 3/2 , In interval notation (-oo,-3/2)uu (3/2,oo)

Explanation:

4x^2-9 >0 or (2x)^2 - 3^2 >0 or (2x+3)(2x-3) >0 #

Critical points are 2x+3=0 or x= -3/2 and 2x-3=0 or x= 3/2

Sign chart:

When x < -3/2 ; (2x+3)(2x-3) sign is (-)*(-) = + :. >0

When -3/2 < x < 3/2 ; (2x+3)(2x-3) sign is (+)*(-) = - :. <0

When x > 3/2 ; (2x+3)(2x-3) sign is (+)*(+) = + :. >0

So Solution is x < -3/2 or x > 3/2 , In interval notation (-oo,-3/2)uu (3/2,oo) [Ans]