How do you solve -5|-2x + -3| + 2 = -33?

1 Answer
Jun 12, 2017

Given: -5|-2x -3| + 2 = -33

Subtract 2 from both sides:

-5|-2x + -3| = -35

Divide both sides by -5:

|-2x + -3| = 7" [1]"

Using the definition of the absolute value function,

|A| = {(A; A>=0),(-A;A < 0):}

We can write the following:

|-2x -3| = {(-2x-3; -2x-3>= 0),(2x+3;-2x-3<0):}

Simplify the inequalities:

|-2x -3| = {(-2x-3; -2x>= 3),(2x+3;-2x<3):}

|-2x -3| = {(-2x-3; x<= -3/2),(2x+3;x> -3/2):}

Substitute both into equation [1]:

-2x -3 = 7; x <= -3/2 and 2x + 3 = 7; x > -3/2

-2x = 10; x <= -3/2 and 2x = 4; x > -3/2

x = -5; x <= -3/2 and x = 2; x > -3/2

Check in the original equation:

-5|-2(-5) -3| + 2 = -33 and -5|-2(2) -3| + 2 = -33

-5|7| + 2 = -33 and -5|-7| + 2 = -33

-33 = -33 and -33 = -33

Both values check.

x = -5 and x = 2