How do you solve #5(2x-5)^2=55# and find any extraneous solutions?
1 Answer
Explanation:
First, solve this algebraically.
Divide by 5
#(2x-5)^2 = 11#
Now take the square root. Don't forget the
#2x-5 = +-sqrt11#
Add 5
#2x = 5+-sqrt11#
And divide by 2
#x = (5+-sqrt11)/2#
So we have 2 solutions:
#x = (5+sqrt11)/2 and x=(5-sqrt11)/2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now to test for extraneous solutions, plug both solutions back into the original problem and see if they work.
#5(2((5+sqrt11)/2)-5)^2=^?55#
#5((5+sqrt11)-5)^2=^?55#
#5sqrt11^2=^?55#
#55=^sqrt() 55#
#5(2((5-sqrt11)/2)-5)^2=^?55#
#5((5-sqrt11)-5)^2=^?55#
#5(-sqrt11)^2=^?55#
#55=^sqrt() 55#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So both solutions work when plugged back in. There are no extraneous solutions.