How do you solve #5sqrt 18 - sqrt 28 + sqrt 63 - sqrt 8#? Prealgebra Exponents, Radicals and Scientific Notation Square Root 1 Answer Shwetank Mauria Jun 21, 2016 #5sqrt18-sqrt28+sqrt63-sqrt8=13sqrt2+sqrt7# Explanation: #5sqrt18-sqrt28+sqrt63-sqrt8# = #5sqrt(2xx3xx3)-sqrt(2xx2xx7)+sqrt(3xx3xx7)-sqrt(2xx2xx2)# = #5xx3xxsqrt2-2xxsqrt7+3xxsqrt7-2xxsqrt2# = #15sqrt2-2sqrt7+3sqrt7-2sqrt2# = #13sqrt2+sqrt7# Answer link Related questions How do you simplify #(2sqrt2 + 2sqrt24) * sqrt3#? How do you simplify #sqrt735/sqrt5#? How do you rationalize the denominator and simplify #1/sqrt11#? How do you multiply #sqrt[27b] * sqrt[3b^2L]#? How do you simplify #7sqrt3 + 8sqrt3 - 2sqrt2#? How do you simplify #sqrt468 #? How do you simplify #sqrt(48x^3) / sqrt(3xy^2)#? How do you simplify # sqrt ((4a^3 )/( 27b^3))#? How do you simplify #sqrt140#? How do you simplify #sqrt216#? See all questions in Square Root Impact of this question 2924 views around the world You can reuse this answer Creative Commons License