How do you solve 5x^2-10x=7x^2+175x210x=7x2+17 using any method?

1 Answer
Feb 3, 2017

x = -5/2 - i3/2x=52i32, x = -5/2 -i3/2x=52i32

Explanation:

"Solve with quadratic formula"Solve with quadratic formula

5x^2 - 10x = 7x^2 + 17 5x210x=7x2+17

"Subtract 7x^2 + 17 from both sides"Subtract 7x^2 + 17 from both sides

5x^2 - 10x - (7x^2 + 17) = 7x^2 + 17 - (7x^2 + 17)5x210x(7x2+17)=7x2+17(7x2+17)

"Refine"Refine

-2x^2 - 10x - 17 = 02x210x17=0

"Quadratic Equation Formula"Quadratic Equation Formula

x_1,2 = {-b± sqrt (b^2 - 4"ac")}/"2a"x1,2=b±b24ac2a

a = -2, b = -10, c = -17: a=2,b=10,c=17:

x_1,2 = {-(-10) ± sqrt (-10^2 - 4(-2)(-17))}/"2(-2)"x1,2=(10)±1024(2)(17)2(-2)

x_1,2 = {-(-10) + sqrt (-10^2 - 4(-2)(-17))}/"2(-2)" = -5/2 - i3/2x1,2=(10)+1024(2)(17)2(-2)=52i32

x_1,2 = {-(-10) - sqrt (-10^2 - 4(-2)(-17))}/"2(-2)"= -5/2 + i3/2x1,2=(10)1024(2)(17)2(-2)=52+i32

x = -5/2 - i3/2x=52i32, x = -5/2 -i3/2x=52i32